
Quantum Complexity Theory Sevag Gharibian
Summer 2019, University of Paderborn

Lecture 10: BQP versus the Polynomial Hierarchy

“And it is also said,” answered Frodo: “Go not to the Elves for counsel for they will answer both
no and yes.” “Is it indeed?” laughed Gildor. “Elves seldom give unguarded advice, for advice is
a dangerous gift, even from the wise to the wise, and all courses may run ill.”
— J. R. R. Tolkien, The Fellowship of the Ring

Contents

1 The key claim 2
1.1 The connection between bounded depth circuits and alternating quantifiers 3
1.2 Outline for lecture . 4

2 The distribution D 4

3 Distinguishing D from U2N is easy quantumly 5

4 Distinguishing D from U2N is hard classically 7
4.1 Boolean circuits and multilinear polynomials . 7
4.2 Tools and proof approach . 8
4.3 Main theorem and proof sketch . 8

Introduction. In Assignment 3, we showed the Sipser-Gács-Lautemann Theorem, which stated that
BPP ⊆ PH (more precisely, BPP ⊆ Σp

2 ∩Πp
2). A natural question is thus: Could BQP ⊆ PH as well?

At first glance, this question appears wholly unconnected to our study of Boson Sampling from Lecture
9. A closer look, however, reveals similar magic at play: BPP ⊆ PH is shown by leveraging the fact that
randomness can be “extracted” from a randomized Turing machine; in this sense, a randomized Turing
machine can be viewed as deterministic, instead taking a uniformly random string as input. Whether the
inherent randomness in quantum circuits can similarly be extracted, however, is entirely unclear. Indeed,
it was precisely this distinction between the classical and quantum models which was exploited in Boson
Sampling to argue that if a classical (but not quantum!) algorithm could solve the approximate Boson
Sampling problem, then PH is at risk1 of collapsing. It hence seems this distinction between “classical and
quantum randomness” has an important role to play in delineating the power of classical versus quantum
computation. Indeed, for this reason, the techniques of the Sipser-Gács-Lautemann Theorem break down in
the quantum setting, and BQP is generally believed not to lie in PH, in contrast to BPP.

Of course, proving BQP 6⊆ PH is difficult. In this lecture, we discuss arguably the next best thing:
“Evidence” that BQP is not in PH in the form of an oracle separation between the classes. The word
evidence is in quotes here, as recall oracle separations are not necessarily reliable evidence that a pair of
classes are distinct. For example, there exist oracles A and B relative to which one can rigorously prove
PA = NPA and yet PB 6= NPB . This is the meaning of the opening quote of this lecture — oracle separations
are like Elves; they may “answer” both no and yes, and it is not clear what the correct answer should be. (As
an aside, what oracle separations do rigorously show is that any separation proof between (in this case) P
and NP must be non-relativizing, i.e. must break down when oracles are added to the picture.) Nevertheless,
as separating classes is typically difficult, oracle separations are often viewed as a desirable first step in this
direction.

1We say “at risk” of collapsing, as recall in the setting of approximate Boson Sampling, part of the research agenda currently
relies on conjectures.

1

Organization. We begin in Section 1 by stating and parsing the key claim on which the lecture rests. This
includes fleshing out a connection between bounded depth circuits and alternating quantifiers in Section 1.1.
The remainder of the lecture shows the key claim: Section 2 states the distribution D required for the
claim, and Sections 3 and 4 sketch its proof. This lecture uses some useful tools such as Fourier analysis to
study Boolean functions, which are worth delving into in their own right. A nice reference for the latter is
https://arxiv.org/abs/1205.0314 (Analysis of Boolean Functions, lecture notes of Ryan O’Donnell with
a guest lecture by Per Austrin, scribed by Li-Yang Tan).

1 The key claim

We begin by stating and parsing the key claim on which the lecture rests. Throughout this lecture, we set
N := 2n for n the input parameter of interest (i.e. N is exponentially large).

Theorem 1. Let U2N denote the uniform distribution over {±1}2N . There exists an explicit distribution D

over {±1}2N satisfying both of the following:

1. (Distinguishing is easy quantumly) There exists a quantum algorithm able to distinguish U2N from D

• with advantage Ω(1/ logN), and

• in time O(logN) using 1 input query.

2. (Distinguishing is hard classically) Any Boolean circuit of size quasipolynomial in N and of constant
depth cannot distinguish U2N from D with advantage better than O(polylog(N)/

√
N).

Exercise. An important step in digesting technical material is to understand what you don’t understand
— which terms in Theorem 1 above require clarification in order to make the theorem a formal statement?

As suggested by the exercise above, there are a few terms here which require clarification:

• What is a Boolean circuit in this context? By “Boolean circuit”, we mean a classical circuit consisting
of unbounded fan-in2 AND and OR gates, as well as NOT gates. The circuit has a single output wire.
Its size is the number of gates, and its depth is the length of the longest path in edges from any input
wire to the output wire. (Here, we are implicitly viewing the circuit as a directed acyclic graph from
input wires to output wires.)

• What do we mean by “advantage”? Let D,D′ be distributions over a finite set X. Then, we say a
(classical or quantum) algorithm A distinguishes between D and D′ with advantage ε if

|PrX∼D[A accepts x]− PrX∼D′ [A accepts x]| = ε.

• How are the distributions U2N and D accessed? We stated above that N is exponentially large in n;
thus, each random sample x ∈ {±1}2N is an exponentially large string. To make this a meaningful
input model, we hence grant algorithms oracle access to string x:

– A classical algorithm is allowed to perform the mapping i 7→ xi for unit cost, for i ∈ [log(2N)]
and xi the ith bit (in the ±1 basis) of x.

– A quantum algorithm is allowed to coherently perform the mapping |i〉 7→ xi|i〉 for unit cost.
Here, we are implicitly using phase kickback to inject xi ∈ {±1} as a phase. The mapping also
works with any “garbage” in an ancilla register, i.e. |i〉|g〉 7→ xi|i〉|g〉 for any state |g〉.

• What counts as “quasipolynomial” size in N? Typically, quasipolynomial in N refers to quantities
such as O(2log

c N) for constant c.

2By unbounded fan-in, we mean each AND and OR gate can have multiple input wires, as opposed to just 2.

2

https://arxiv.org/abs/1205.0314

• What in the world does Theorem 1 have to do with PH? As the title of this lecture suggests, we are
interested in giving an oracle-based task which can be solved in BQP but not in PH. Yet, the statement
of Theorem 1 says nothing about PH or even alternating quantifiers — rather, it is a no-go statement
for quasipolynomial size bounded depth circuits. The missing link between these two ideas is worthy
of a discussion in its own right, which we now move to.

1.1 The connection between bounded depth circuits and alternating quantifiers

We first recall the definition of PH.

Definition 2 (Polynomial Hierarchy (PH) and Σp
k). A language L ⊆ {0, 1}∗ is in Σp

k, if there exists
a polynomial-time uniformly generated Turing machine M which takes in input x ∈ {0, 1}n, k proofs

y1, . . . , yk ∈ {0, 1}n
c

for c, k ∈ O(1), and acts as follows:

x ∈ L ⇒ ∃y1∀y2∃y3 · · ·Qkyk such that M accepts (x, y1, . . . , yk), (1)

x 6∈ L ⇒ ∀y1∃y2∀y3 · · ·Qkyk such that M rejects (x, y1, . . . , yk), (2)

where Qk = ∃ (Qk = ∀) if i is odd (even). We define PH =
⋃

i∈N Σp
k, where Σp

0 = P.

In the setting of oracle problems, there is a slick connection between bounded depth circuits and com-
putations of the above form, which we state and prove in full generality below. To set this up, fix N = 2n

for input parameter n, and consider an arbitrary Boolean function f : {0, 1}N 7→ {0, 1}. Since any input

x ∈ {0, 1}N to f is exponentially long, we assume we are given only access via some oracle Ox to x, i.e. the
ability to map i 7→ xi for unit cost for any i ∈ [N].

Lemma 3. Suppose there exists a Σp
k machine M which is given as input (1) a unary string 1n and (2)

x ∈ {0, 1}N given implicitly via access to oracle Ox, and computes output f(x) ∈ {0, 1}. Then, there exists

a Boolean circuit of depth k + 1 and size O(2log
c′ N) for some c′ ∈ O(1) which, given access to oracle Ox,

computes f(x).

It is worth stressing above that M only receives 1n as an explicit input; the “actual” input x on which f is
to be evaluated is “stored off-site” in the oracle Ox.

Proof of Lemma 3. Let M be the Σp
k machine computing f(x) with oracle access to x ∈ {0, 1}N . Without

loss of generality, we may assume M makes only a single query to x, as per the following exercise.

Exercise. Show that by adding two additional alternating quantifiers, one can simulate M making a poly-
nomial number of calls to f with some M ′ making only a single call to f . (Hint: Think about computational
paths which branch each time an oracle query answer bit is received. Use the ∃ and ∀ quantifiers to “pick
out and enforce” the “correct” computational branching process.) Can you reduce it to requiring just one
additional alternating quantifier?

High-level idea. We shall build an AND-OR tree T whose nodes are unbounded fan-in AND and OR
gates. The leaves are the input bits; by applying the AND and OR gates each time we move up a level from
the leaves, we arrive at the root, which shall be an OR gate. The output bit of the root shall be 1 if and

only if f(x) = 1. The depth of the tree shall be k + 1, and its size O(2log
c′ N); hence, we will have a circuit

computing f(x) with properties stated in the claim.

3

The construction. We view the action of M via its computational branches. Let us start with the

first existentially quantified proof, y1 ∈ {0, 1}n
c

. This induces a branching in M over 2n
c

computational
paths (one per possible proof y1), and M accepts if at least one of these branches accepts. Hence, in T we
“represent y1” via an OR gate at the root which takes in 2n

c

wires and outputs a single wire. We can now
recursively apply the same idea for each successive proof yi, except whenever we have Qi = ∀, we instead
put in an AND gate into T (as opposed to an OR gate for Qi = ∃). Finally, each leaf of T is reached
by fixing a sequence of proofs y1, . . . , yk. At any such leaf, we may assume M makes its single query to
Ox, and subsequently decides to accept or reject. Specifically, M evaluates some polynomial-time function

g(y1, . . . , yk) : ({0, 1}n
c

)×k 7→ [N] to obtain the index i ∈ [N] on which it will query Ox. Upon obtaining

xi, it performs some final polynomial-time computation g′(y1, . . . , yk, xi) : ({0, 1}n
c

)×k × {0, 1} 7→ {0, 1} to
decide whether to accept or reject. Equivalently, this can be viewed as: Conditioned on y1, . . . , yk, M either
returns xi or xi.

Exercise. There is another option above: M could return a constant value independent of xi. Why can
we ignore this case without loss of generality? (Hint: Do we need a query to Ox in this case? If no query is
needed, how can we trivially modify the tree and corresponding circuit to eliminate this leaf altogether?)

Now, if M returns xi at this leaf, then the corresponding circuit simply reads input bit xi here via a query
to Ox. If M instead returns xi at this leaf, the corresponding circuit first reads input xi via Ox, and
subsequently applies a NOT gate (which is also viewed as a node in T with one input and one output wire).
This completes the construction.

Exercise. Prove that the tree T constructed has depth k + 1 and size O(
∑k

i=0(2n
c

)i) ∈ O(2log
c′ N) for

some c′ ∈ O(1). Conclude there is a bounded depth circuit as stated in the claim which computes f(x) given
oracle access to x.

With Lemma 3, we can close our discussion of the key claim of the lecture via the following exercise.

Exercise. Use Lemma 3 to answer our earlier question, “What in the world does Theorem 1 have to
do with PH?”. In other words, show that Theorem 1 implies that for any k ∈ O(1), no Σp

k machine can

distinguish between U2N and D with advantage better than O(poly(N)/
√
N).

1.2 Outline for lecture

With Theorem 1 in place, the remainder of the lecture proceeds as follows:

• Specify the distribution D.

• Show that distinguishing D from U2N is easy quantumly.

• Show that distinguishing D from U2N is hard classically.

2 The distribution D

The distribution D in Theorem 1 is defined via a two-step process as follows. Set n ∈ N as our input
parameter, N = 2n, and ε = 1/(24 ln(N)) (the precise value of ε is not relevant for our lecture, only that
ε ∈ O(poly(n)).

4

Step 1: Define a distribution G′ over continuous space RN × RN .

1. (Sample the first N real numbers) Sample x1, . . . , XN ∈ R independently, each according to N (0, 1).
(This can roughly be viewed as choosing a Haar random vector in RN .) Denote x = (x1, . . . , xN) ∈ RN .

2. (Correlate the second N real numbers with x) Observing that x ∈ R2n is a column vector, set y = H⊗nx
for H the 2× 2 Hadamard gate.

3. (Final output) Output vector
√
ε(x, y) ∈ R2N .

Note that since ε is “small”, with high probability −1 ≤ zi ≤ 1. For simplicity in this lecture, we henceforth
assume that indeed −1 ≤ zi ≤ 1 for all i ∈ [2N]. (One can deal with zi violating this via a further “truncation
step”, which complicates the analysis and does not affect its core intuition; we omit this here.)

Step 2: “Round” G′ to a distribution D over discrete space {±1}N ×{±1}N . The distribution G′

is over R2N , but Theorem 1 requires a distribution D over {±1}2N . Since we are assuming all zi ∈ [−1, 1],

we can perform such a mapping to {±1}2N using a now-standard idea in approximation algorithms; namely,
“snap” zi to whichever of −1 or 1 it is closer to with probability proportional to |zi|. Formally:

1. (Snap to the Boolean hypercube) Independently for each i ∈ [2N], set

z′i := ±1 with probability
1± zi

2
.

2. (Final output) Output the resulting string z′ ∈ {±1}N × {±1}N .

Brief intuition. The main idea behind the choice of G′ is that “Gaussian distributions are nice to work
with”. Thus, ideally we would like to analyze G′ rather than this clunky “discrete” object D, which is
necessary mainly due to the query model (e.g. recall a quantum query injects z′i ∈ {±1} as a phase).
Luckily, due to the choice of D, it turns out that as far as expectation values are concerned, both D and G′

are “equivalent” in the following sense.

Exercise. Prove that E[z′i] = zi for all i ∈ [2N], where recall z′i (zi) are the discrete (continuous) coordi-
nates.

3 Distinguishing D from U2N is easy quantumly

The construction. Given oracle access to input z′ ∈ {±1}2N , our goal is to decide whether z′ was drawn
according to D or U2N . To do this quantumly, we imagine that the oracle for accessing z′, denoted Oz, is
split into two oracles Ox and Oy, such that for any i ∈ [N],

(“x part”) Ox|i〉 7→ z′i|i〉 and (“y part”) Oy|i〉 7→ z′N+i|i〉.

Exercise. Show how to implement Ox and Oy given Oz.

The quantum circuit for distinguishing D from U2N is given in Figure 1. It is denoted Vn, since it acts
on n+ 1 wires; the first wire is a control denoted c, and wires 2 to n+ 1 are fed to the oracle Oc. The control
mechanism is as follows: If c = 0, then Oc applies Ox, and if c = 1, Oc applies Oy.

Correctness. For the remainder of this section, set z′ = x′y′ for x′, y′ ∈ {±1}N . The following theorem
shows that Vn works as intended.

Theorem 4. Suppose circuit Vn of Figure 1 outputs 1 when it measures 1 and outputs −1 when it measures
0 (i.e. we are measuring observable −Z). Then, the expected output of Vn on z′ ∼ U2N (respectively, z′ ∼ D)
is 0 (respectively, ε).

5

|0〉 H • H X

|0〉 H

Oc

H

|0〉 H H

...
...

|0〉 H H

Figure 1: The quantum circuit Vn for distinguishing D from U2N .

Exercise. Theorem 4 is in terms of expectation, but we defined “advantage” in Theorem 1 using proba-
bilities. Why does the former immediately imply the quantum advantage claimed in Theorem 1? (Hint: No
repetition of the protocol is needed. Use the fact that Vn has only two possible outcomes, ±1.)

Proof of Theorem 4. We proceed in three steps.

Step 1: The probability with which Vn outputs 1.

Exercise. Show that Vn measures 1 in the control qubit with probability

1

2

1 +

 1√
23n

∑
i,j∈[N]

(−1)i·jx′iy
′
j

 =
1

2

1 +

 1

N

∑
i,j∈[N]

(H⊗n(i, j))x′iy
′
j

 =:
1

2
(1 + ϕ(x′, y′)),

where i · j denotes the inner product modulo 2 of the bit strings i and j, and H⊗n(i, j) is the (i, j)th entry
of H⊗n. To characterize the acceptance probability of Vn, it hence suffices to analyze the multilinear
polynomial ϕ(x′, y′).

Exercise. Why is ϕ multilinear?

Step 2: Expected output of Vn for z′ ∼ U2N .

Exercise. Prove that E(x′,y′)∼U2N
[ϕ(x′, y′)] = 0. (Hint: There are three tools in mathematics which should

always be at the top of your toolbox; the Cauchy-Schwarz inequality, Taylor series, and the linearity of ex-
pectation.)

We hence conclude that when z′ ∼ U2N , the circuit Vn outputs each possible answer with probability 1/2.

Step 3. Expected output of Vn for z′ ∼ D. Recall in Section 2 that we had the gall to call discrete-
valued distribution D “clunky”, but the multivariate Gaussian distribution G′ “nice”. Here we will see why.
First, we claim that

E(x′,y′)∼G′ [ϕ(x′, y′)] = ε, (3)

where note we are using G′.

Exercise. Prove that for (x′, y′) ∼ G′ and any i, j ∈ [N], E(x′,y′)∼G′ [x
′
iy
′
j] = ε (−1)

i·j
√
N

.

Via the exercise above and the linearity of expectation, the claim of Equation (3) follows:

E(x′,y′)∼G′ [ϕ(x′, y′)] =
1

N

∑
i,j∈[N]

(−1)i·j√
N

E(x′,y′)∼G′ [x
′
iy
′
j] =

1

N2

∑
i,j∈[N]

ε = ε.

6

So now we know ϕ has the right expectation with respect to G′; but we need the expectation of ϕ relative to
D to correctly capture the expected output of Vn. For this, we use the following remarkable lemma (whose
proof is omitted).

Lemma 5. For any multilinear function F : R2N 7→ R,

Ez′∼D[F (z′)] = Ez∼G′ [F (z)].

In words, if we process the input z′ by a sufficiently restricted function F , namely multilinear F , then one
cannot distinguish on expectation whether samples are drawn from D or G′.

Exercise. Combine Equation (3) and Lemma 5 to complete the proof of Theorem 4. What is the multilinear
function F set to in our use of Lemma 5?

4 Distinguishing D from U2N is hard classically

We now wish to show that on expectation, any bounded depth circuit (as outlined in Theorem 1) cannot
distinguish between samples z′ drawn from D versus U2N . A hint as to where we might wish to begin is
given by Lemma 5, which recall says that on expectation under the action of any multilinear map F , D and
U2N are indistinguishable. Lucky for us, it is well-known that the action of any Boolean circuit is captured
by a multilinear map, which we now review.

4.1 Boolean circuits and multilinear polynomials

Let C be an arbitrary circuit mapping {±1}n to {±1}. We can equivalently view C as a Boolean function
from {±1}n to {±1}, to which the following lemma applies.

Lemma 6. Let f : {±1}n 7→ {±1} be a Boolean function. Then, f has a (unique) multilinear extension
g : Rn 7→ R such that g(x) = f(x) when x ∈ {±1}n, and

g(x) =
∑
S⊆[n]

ĝ(S) ·
∏
i∈S

xi,

for ĝ(S) ∈ R the Fourier coefficients of g.

Proof sketch. The idea is to write g as a sum of 2n terms, each of which encodes the product of an output
f(x) for some x times an “indicator function” which eliminates all terms other than x. The construction is
best sketched via an example. Let n = 3, and consider input x = (1,−1, 1). Then, we add to g the term(

1 + x1
2

)(
1− x2

2

)(
1 + x3

2

)
f(x).

The three terms in brackets serve as the “indicator function” alluded to above, which is uniquely specified
by the string x = (1,−1, 1).

Exercise. Verify that when x = (1,−1, 1) is plugged into the equation above, the output is f(x). What is

the output when x ∈ {±}3 but x 6= (1,−1, 1)?

Exercise. What would be the indicator function for, say, x = (−1,−1,−1)?

By adding to g a term of the above form for each possible input x ∈ {±1}n, expanding the brackets
and simplifying the resulting expression, we obtain the final desired polynomial g, which may consist of
exponentially many terms in general.

7

Exercise. Why is g multilinear?

4.2 Tools and proof approach

In the remainder of our discussion, let us henceforth use C interchangeably to mean a classical circuit and
its multilinear extension (Lemma 6), where the desired interpretation will hopefully be clear from context.

Our goal is to show that if C : {±1}2N 7→ {±1} is constant depth and has size 2log
c N for constant c, then

C cannot distinguish on expectation between D and U2N , i.e.

|Ez′∼D[C(z′)]− Eu∼U2N
[C(u)]| ≤ polylog(N)√

N
,

where recall N = 2n is exponentially large in the input parameter, n.

Basic proof approach. We begin with a simple observation.

Exercise. Prove that Eu∼U2N
[C(u)] = Ĉ(∅), for Ĉ(∅) the Fourier coefficient of C corresponding to empty

set S = ∅.

In words, the expectation of the circuit C under U2N simply eliminates all higher order Fourier coefficients,
leaving behind the constant term in the Fourier expansion of C, Ĉ(∅). Thus, it suffices for our goal to show∣∣∣Ez′∼D[C(z′)]− Ĉ(∅)

∣∣∣ ≤ “small”. (4)

Our basic proof approach is hence to show that, on expectation, the contribution of higher order Fourier
coefficients to C(z′) on inputs z′ ∼ D is bounded.

Tools. To follow this basic approach, we require a pair of tools.

1. Tail bounds on Fourier coefficients (proof omitted):

Lemma 7. Let C : {±1}2N 7→ {±1} be a Boolean circuit of depth d and of size s. Then for any k ∈ N,
there exists c ∈ O(1) such that ∑

S⊆[2N]

∣∣∣Ĉ(S)
∣∣∣ ≤ (c log s)(d−1)k.

In words, Lemma 7 intuitively says that for constant depth circuits, the low order (e.g. k ∈ O(1))
Fourier coefficients are bounded. Thus, this lemma alone gets us part of the way to Equation (4); the
problem is the lemma does not work a priori for higher order coefficients.

2. Random walks: To use Lemma 7 to also bound the high-order Fourier coefficients of C, we use a
trick — it turns out we can simulate drawing z′ ∼ D with a random walk which takes “baby steps”.
Applying Lemma 7 to each such “baby step” and applying the triangle inequality then does the trick.

4.3 Main theorem and proof sketch

We are now ready to state and sketch a proof of the main theorem, which is a quantitative version of
Equation (4).

Theorem 8 (D fools bounded depth circuits). Let C : {±1}2N 7→ {±1} be a Boolean circuit of depth d and
size s. Then ∣∣∣Ez′∼D[C(z′)]− Ĉ(∅)

∣∣∣ ≤ 12ε(c log s)2(d−1)√
N

.

8

To prove Theorem 8, we require one final lemma, which is proven using the tail bounds of Lemma 7 (i.e.
we will not directly use Lemma 7 otherwise in this lecture).

Lemma 9. Fix p ≤ 1/4. Let C : {±1}2N 7→ {±1} be a Boolean circuit of depth d and size s such that√
εp(c log s)d−1 ≤ 1

4 . Then, for any z0 ∈ [− 1
2 ,

1
2],

|Ez∼G′ [C(z0 + pz)]− C(z0)| ≤ 12εp2(c log s)2(d−1)√
N

.

Intuitively, Lemma 9 says that if in a random walk we evaluate C at our “current point” z0, versus if evaluate
C on a slight perturbation of order p of z0 (i.e. on z0 +pz), then the ability for C to distinguish these inputs
is damped quadratically in p. Thus, to simulate drawing z′ ∼ D, we shall run a random walk with baby
steps of small order, i.e. p = 1/

√
N .

Proof sketch of Theorem 8. Assume without loss of generality that
√
ε(c log s)d−1 ≤ 1

4N
1/4, as otherwise the

claim is vacuous. We run the following random walk for t = N steps, with perturbation size p = 1√
N

:

1. Draw t samples z(1), . . . , z(t) ∼ G′.

2. Set the output of “step i” of the random walk, for i ∈ {0, . . . , t}, to be random variable

z≤(i) = p(z(1) + · · ·+ z(i)).

One can show that z≤(t) ∼ G′, i.e. the random walk exactly reproduces the distribution G′. (Namely, z≤(i)

and G′ share the same expectation and covariance matrix.)
Now, for any step i ∈ {0, . . . , t− 1}, since each entry of z≤(i) is Gaussian with variance scaling as ∼ p2ε,

we have with high probability that z≤(i) ∈ [−1/2, 1/2]2N , as required for Lemma 9. Thus, by setting
z0 = z≤(i) and calling Lemma 9 (i.e. this is where we use the tail bounds), we have that∣∣∣E[C(z≤(i+1))]− E[C(z≤(i))]

∣∣∣ ≤ 12εp2(c log s)2(d−1)√
N

. (5)

Thus, the change in output of C, on expectation from step i to i + 1 of the walk, is bounded by a factor
scaling with p2 = 1/N . Applying this recursively over all steps of the walk, we conclude:∣∣∣Ez′∼D[C(z′)]− Ĉ(∅)

∣∣∣ =
∣∣∣Ez∼G′ [C(z)]− Ĉ(∅)

∣∣∣
=

∣∣∣E[C(z≤(t))]− Ĉ(∅)
∣∣∣

≤
t−1∑
i=0

∣∣∣E[C(z≤(i+1))]− E[C(z≤(i))]
∣∣∣

≤ t
12εp2(c log s)2(d−1)√

N

=
12ε(c log s)2(d−1)√

N
,

where the first statement follows from Lemma 5, the second since z≤(t) ∼ G′, the third by the triangle
inequality over all steps of the walk, and the fifth by Equation (5).

Exercise. The third statement above involves a term of form
∣∣E[C(z≤(1))]− E[C(z≤(0))]

∣∣, but we have

not explicitly defined z≤(0). Intuitively, we require E[C(z≤(0))] = Ĉ(∅). How should we define z≤(0) for this
requirement to hold? (Hint: Which input x ∈ R2N reduces the multilinear extension C to its constant term,

Ĉ(∅)?) Why does this choice of z≤(0) make sense given our definitions of z≤(i) for i ∈ [t]?

9

	The key claim
	The connection between bounded depth circuits and alternating quantifiers
	Outline for lecture

	The distribution D
	Distinguishing D from U2N is easy quantumly
	Distinguishing D from U2N is hard classically
	Boolean circuits and multilinear polynomials
	Tools and proof approach
	Main theorem and proof sketch

